Building Cluster-Safe Once-Only Methods with Locks, Java and Postgres or DynamoDB

In distributed systems, ensuring that certain operations execute only once across multiple instances is a critical requirement. Whether you’re processing payments, sending notifications, or performing data migrations, you need guarantees that these operations don’t accidentally run multiple times. This article explores how to use PostgreSQL advisory locks through the lock-postgres utility to create cluster-safe once-only methods in Java.

See here for our OSS implementation of cluster locks using postgresql. We also have an implementation using DynamoDB here (same API).

The Challenge of Distributed Execution

Consider a common scenario: you have multiple instances of your application running in a cluster, and each instance processes scheduled tasks. Without proper coordination, you might end up with:

  • Duplicate payment processing
  • Multiple notification emails sent
  • Race conditions in data migrations
  • Resource contention issues

Traditional Java synchronization mechanisms like synchronized blocks or ReentrantLock only work within a single JVM. For cluster-wide coordination, you need a distributed locking mechanism.

Solution 1: Using PostgreSQL Advisory Locks

PostgreSQL provides advisory locks – lightweight, application-level locks that don’t interfere with table-level locks. These locks are perfect for coordinating application logic across multiple instances.

The lock-postgres utility leverages PostgreSQL’s advisory lock functions:

  • pg_try_advisory_xact_lock(key) – Non-blocking lock attempt
  • pg_advisory_xact_lock(key) – Blocking lock acquisition

These locks are automatically released when the database transaction commits or rolls back, making them ideal for transactional operations.

Solution 2: Using DynamoDB and the AWS AmazonDynamoDBLockClient

We also have a dynamo DB solution using the AWS AmazonDynamoDBLockClient as the implementation of the Lock API. This is an implementation of the same lock API in the examples in this article.

Setting Up the Dependencies

First, add the required dependencies to your project:

PostgreSQL implementation:

<dependency>   
  <groupId>com.limemojito.oss.standards.lock</groupId>  
  <artifactId>lock-postgres</artifactId>
  <version>15.3.2</version>
</dependency>

DynamoDB Implementation

<dependency>   
  <groupId>com.limemojito.oss.standards.lock</groupId>  
  <artifactId>lock-dynamodb</artifactId>
  <version>15.3.2</version>
</dependency>

Basic Usage Pattern

The PostgresLockService implements the LockService interface and provides two primary methods for lock acquisition:

@Service
@RequiredArgsConstructor
public class OnceOnlyService {   
     private final LockService lockService;   
     private final PaymentProcessor paymentProcessor;        
     @Transactional    public void processPaymentOnceOnly(String paymentId) {
        String lockName = "payment-processing-" + paymentId;
        // Try to acquire the lock - non-blocking
        Optional<DistributedLock> lock = lockService.tryAcquire(lockName);
        if (lock.isPresent()) {           
          try (DistributedLock distributedLock = lock.get()) {                
                // Only one instance will execute this block
                paymentProcessor.process(paymentId);
                log.info("Payment {} processed successfully", paymentId);
           }
        } else {
            log.info("Payment {} is already being processed by another instance", paymentId);
        }
    }
}

Blocking vs Non-Blocking Lock Acquisition

The lock service provides two approaches:

1. Non-Blocking (tryAcquire)

@Transactional
public void tryProcessOnceOnly(String taskId) {
    Optional<DistributedLock> lock = lockService.tryAcquire("task-" + taskId);
        if (lock.isPresent()) {
        try (DistributedLock distributedLock = lock.get()) {
            // Process the task
            performCriticalOperation(taskId);
        }
    } else {
        // Task is being processed elsewhere, skip or handle accordingly
        log.info("Task {} is already being processed", taskId);
    }
}

2. Blocking (acquire)

@Transactional
public void waitAndProcessOnceOnly(String taskId) {
    // This will wait until the lock becomes available
    try (DistributedLock lock = lockService.acquire("task-" + taskId)) {
        // Guaranteed to execute once the lock is acquired
        performCriticalOperation(taskId);
    }
    // Lock is automatically released when the transaction commits
}

Real-World Example: Daily Report Generation

Let’s implement a practical example where multiple application instances need to coordinate daily report generation:

@Component
@RequiredArgsConstructor
@Slf4j
public class DailyReportService {
    private final LockService lockService;
    private final ReportRepository reportRepository;
    private final NotificationService notificationService;

    @Scheduled(cron = "0 0 2 * * *") // Run at 2 AM daily
    @Transactional
    public void generateDailyReport() {
        String today = LocalDate.now().toString();
        String lockName = "daily-report-" + today;
        Optional<DistributedLock> lock = lockService.tryAcquire(lockName);
        if (lock.isPresent()) {
            try (DistributedLock distributedLock = lock.get()) {
                log.info("Starting daily report generation for {}", today);

                // Check if report already exists (additional safety)
                if (reportRepository.existsByDate(today)) {
                    log.info("Report for {} already exists, skipping", today);
                    return;
                }
 
                // Generate the report
                Report report = generateReport(today);
                reportRepository.save(report);
 
                // Send notifications
                notificationService.sendReportGeneratedNotification(report);
                log.info("Daily report for {} generated successfully", today);
            }
        } else {
            log.info("Daily report for {} is being generated by another instance", today);
        }
    }

    private Report generateReport(String date) {
        // Implementation of report generation logic
        return new Report(date, collectDailyMetrics());
    }
}

Advanced Patterns

1. Lock with Timeout Handling

For blocking locks, you can implement timeout handling using Spring’s @Transactional timeout:

@Transactional(timeout = 30) // 30-second timeout
public void processWithTimeout(String taskId) {
    try (DistributedLock lock = lockService.acquire("timeout-task-" + taskId)) {
        performLongRunningOperation(taskId);
    } catch (DataAccessException e) {
        log.error("Failed to acquire lock within timeout period", e);
        throw new LockTimeoutException("Could not acquire lock for task: " + taskId);
    }
}

2. Hierarchical Locking

Create hierarchical locks for complex operations:

@Transactional
public void processOrderWithHierarchy(String customerId, String orderId) {
    // First acquire customer-level lock
    try (DistributedLock customerLock = lockService.acquire("customer-" + customerId)) {
        // Then acquire order-level lock
        try (DistributedLock orderLock = lockService.acquire("order-" + orderId)) {
            processOrderSafely(customerId, orderId);
        }
    }
}

3. Conditional Processing with Fallback

@Transactional
public ProcessingResult processWithFallback(String taskId) {
    Optional<DistributedLock> lock = lockService.tryAcquire("primary-task-" + taskId);
    if (lock.isPresent()) {
        try (DistributedLock distributedLock = lock.get()) {
            return performPrimaryProcessing(taskId);
        }
    } else {
        // Primary processing is happening elsewhere, perform alternative action
        return performAlternativeProcessing(taskId);
    }
}

Configuration and Best Practices

1. Database Configuration

Ensure your PostgreSQL database is properly configured for advisory locks:

-- Check current lock status
SELECT * FROM pg_locks WHERE locktype = 'advisory';
-- Set appropriate connection and statement timeouts
SET statement_timeout = '30s';
SET lock_timeout = '10s';

2. Spring Configuration

Configure your PostgresLockService bean:

@Configuration
public class LockConfiguration {
    @Bean
    public LockService lockService(JdbcTemplate jdbcTemplate) {
        return new PostgresLockService(jdbcTemplate);
    }
}

Key Benefits and Considerations

Benefits:

  • Cluster-safe: Works across multiple JVM instances
  • Transactional: Automatically releases locks on transaction completion
  • Lightweight: No additional infrastructure required
  • Reliable: Leverages PostgreSQL’s proven lock mechanisms
  • Flexible: Supports both blocking and non-blocking approaches

Considerations:

  • Database dependency: Requires PostgreSQL database connection
  • Transaction requirement: Locks must be used within database transactions
  • Lock key collision: Different lock names with same hash could collide
  • Connection pooling: Consider impact on database connection pools

Conclusion

PostgreSQL advisory locks provide a robust foundation for implementing cluster-safe once-only methods in Java applications. The lock-postgres utility simplifies this implementation by providing a clean API that integrates seamlessly with Spring’s transaction management.

By using these distributed locks, you can ensure that critical operations execute exactly once across your entire cluster, preventing data inconsistencies and duplicate processing. The transaction-based approach ensures that locks are automatically cleaned up, even in failure scenarios, making your distributed system more reliable and maintainable.

Whether you’re processing financial transactions, generating reports, or coordinating data migrations, PostgreSQL advisory locks offer a battle-tested solution for distributed coordination without the complexity of additional infrastructure components.